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Abstract. Concurrent search structure templates simplify reasoning
about concurrent data structures by dividing them into synchroniza-
tion patterns and underlying sequential data structures, which can be
designed and verified independently. Past work has used templates to
decompose the verification of specific data structures and reuse some of
their components, but has not given a general characterization of what
makes a concurrency template or whether it can be applied to a given
data structure. In this paper, we formally define the interface provided
by search structure templates, and show that as long as a sequential data
structure component and a concurrency template are proved to implement
this interface, they can immediately compose into a verified concurrent
data structure with no additional effort. Thus, from any m verified data
structure components and n verified concurrency components, we obtain
m× n verified data structures. We validate our interface by verifying two
data structure instances (linked list and binary search tree) and three
concurrency templates (coarse-grained locking, lock coupling, and give-
up), which can be freely plugged into a top-level verified data structure
whose correctness proof is parameterized by the interface.

Keywords: Concurrent data structures · Separation logic · Composi-
tional verification.

1 Introduction

Concurrent search structure templates were introduced by Krishna et al. [3] as
an approach to modular verification of concurrent data structures, based on
earlier design work by Shasha and Goodman [12]. The approach consists of a
programming pattern and specification style that decomposes concurrent data
structures into concurrency templates (lock coupling, give-up) and sequential
data structures (linked list, hash table), using flow interfaces [4] to describe the
connections between local and global data structure constraints. Later work in the
same line extends the template approach to adding multicopy support [8] (e.g.,
log-structure merging), or combining thread-safe node implementations into larger
data structures [9]. However, these applications are qualitatively different from the
original promise of the approach: that we can decompose both the implementation
and the proof of a concurrent data structure into a concurrency-unaware data
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structure component and a data-structure-unaware concurrency component. This
form of modularity is, to the best of our knowledge, unique in the literature,
at least when the concurrent component is fine-grained (i.e., implemented with
a lock per node or lock-free operations rather than one big lock). It also poses
unique challenges in both implementation and specification/verification.

Krishna et al.’s presentation of templates explains the high-level idea of
the approach and demonstrates several examples, but does not formally define
templates or data structures. In particular, a modularization technique should
have a well-defined interface for each of its components, so that we know that
components written and verified according to the technique can be successfully
combined. In a truly compositional approach, given m data structure components
and n concurrency templates, we should immediately obtain m × n verified
concurrent data structures. The original presentation of templates does not realize
this (nor does it claim to): it presents three verified templates and five verified
data structures, but each data structure is combined with only one template.
In fact, close examination of the examples shows that different templates use
different and incompatible specifications for the data structure component. In
this paper, we rectify this by presenting a formal interface for concurrent
search structure templates, implemented as a library in C and a collection
of typeclasses in Rocq [13], that guarantees m× n verified data structures from
m+ n components. More specifically:

• We describe an approach to implementing data structures and synchro-
nization mechanisms so that they can be freely combined. This is harder
than it might sound: we must define data structure implementations without
explicitly leaving space for concurrency metadata like locks, but in a way
that still composes with concurrency templates without any glue code. We
propose an approach that can be implemented even in relatively non-modular
languages like C.

• We give a formal interface for data structure components and concurrency
templates, each of which consists of a set of functions with fixed separation
logic specifications. These specifications follow the style of Krishna et al., but
we clarify which specifications should be considered the official interface and
which are derived or implementation-specific, as well as ensuring that data
structure components are never assumed to include concurrent features and
concurrency templates never rely on data structure details. We verify top-
level concurrent data structure operations (insert and lookup) against these
specifications, guaranteeing that they work correctly for any data structure
component and template that satisfy the interface.

• We exhibit two data structures (linked list and binary search tree) and
three concurrency templates (coarse-grained locking, lock coupling, and give-
up) that satisfy our interface, and from them freely obtain six verified
concurrent data structures, implemented in C and verified using the
Verified Software Toolchain (VST) [1].
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Related Work

Our work builds heavily on the presentation of templates by Krishna et al. [3],
aiming to expand their approach into a formal and compositional framework. In
Krishna et al.’s formulation, each template has its own specifications for data
structure functions, and these specifications may be incompatible with each other:
for instance, the lock-coupling template expects the data structure’s insertion
function insertOp to create a new node, while the give-up and link templates
expect it to add keys to an existing node. Thus each template is composed
with different data structure implementations, which must be designed to work
with that particular template, and each template must implement and verify its
own top-level functions like lookup and insert. Furthermore, data structure
components are written in Grasshopper [10], while templates are written in
Iris’s HeapLang [2], so 1) there may be gaps between the properties expected
by templates and those guaranteed by data structures, and 2) code components
cannot be combined into a single executable data structure. In contrast, our
framework standardizes the interfaces for data structures and templates, so
that any data structure component in the framework is guaranteed to compose
with any template: more precisely, we provide a single implementation of the
concurrent insert and lookup functions (see Section 4.3) that calls functions
from the template interface and is proved correct once and for all, quantified
over an arbitrary data structure and template implementation. Furthermore,
our implementation is entirely in C and VST, so the combination of any two
components yields an executable C implementation of a concurrent data structure
with an end-to-end correctness proof.

Our work is also closely related to Nguyen et al. [6]’s VST implementation
of search structure templates without flow interfaces, which identified several
obstacles to compositionality: inconsistent specifications for insertOp, ambiguous
boundaries between data structures and templates, and the need to allocate
synchronization metadata that may depend on data structure details. Our work
overcomes all of these obstacles, and demonstrates that flow interfaces are
a sufficient abstraction to communicate structural information between data
structures and templates. Nguyen et al. also observed that the template approach
implicitly involves a third style of operations, no-op maintenance operations like
rotation in BSTs or node splitting in B-trees, which do not generally decompose
into data structure and concurrency components. Our framework does not yet
account for this third class of operations, but we believe they could be added
into our top-level functions without breaking compositionality (but also without
benefiting from it).

2 Background

2.1 Concurrent Search Structure Templates

Concurrent search structure templates [3] are an abstraction technique for decom-
posing the implementation/verification of a concurrent search structure (i.e., a
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data structure that supports lookup, insert, and possibly delete operations) into
a concurrency part (the template) and a data structure part. A data structure
implements a node type and core local operations on those nodes—e.g., looking
up the value at a given node, or inserting a key at a specified point in the data
structure—as well as some helper functions. A template implements top-level
concurrent data structure operations like insertion and deletion, interacting with
the underlying nodes only via the specified functions. The core of each template is
a traverse function that moves through the data structure using the template’s
synchronization mechanism, ultimately finding the node at which a local data
structure operation should be performed. In this way, any data structure that
implements the appropriate functions can be plugged into the template to yield
a concurrent data structure.

let rec traverse p n k =
match findNext n k with
| None -> (p, n)
| Some n' ->

lockNode n';
unlockNode n;
traverse n n' k

let insert r k =
lockNode r;
let n = traverse r r k in
let res = insertOp n k in
unlockNode n;
res

Fig. 1: The lock-coupling search structure template

Figure 1 shows an example search structure template in ML-like pseudocode.
This template’s concurrency control mechanism is lock coupling, as can be seen
in the traverse function, where we acquire the lock on the next node before
releasing the lock on the current node. The node to travel to during traversal is
selected by a black-box function findNext provided by the data structure; all
the template needs to know is that it has some way of choosing a next node to
examine. Once the appropriate node for the key has been found, the template
returns it to a top-level function such as insert that calls out to the data
structure to perform the actual insertion on the node. Thus, the traverse and
insert functions can be written and verified without knowing anything about
the target data structure other than its synchronization mechanism, as long
as the data structure implements findNext and insertOp operations with the
required semantics.

Krishna et al., following Shasha and Goodman’s original work on template
algorithms [12], define three templates: lock coupling, give-up, and link. The
lock-coupling template acquires locks on both parent and child nodes when
moving from one to the other, guaranteeing that the link followed is never out
of date. The link template only acquires a lock on the current node, and its
traverse may return an invalid node; in this case, the operation (insert, lookup,
etc.) may fail, and if it does then the operation restarts from the root of the data
structure. The give-up template stores an explicit range of expected keys in each
node, and checks this range at each node it traverses, restarting the traversal if
it ever reaches a node whose range does not include the target key. For each of
these templates, they implement and verify a traverse function and use it to
implement and verify the top-level data structure operations.
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Templates and data structures are verified using concurrent separation logic,
and the interface between data structures and templates relies on two key
constructs, flow interfaces and logical atomicity , which we describe in more
detail in the following sections. The interface provided by a data structure
implementation includes a predicate of the form node (n, In, Cn), where n is the
node itself (i.e., a pointer to the node data structure), In is a flow interface for n,
and Cn is n’s contribution to the state of the overall data structure, e.g., the set
of keys contained in n. The flow interface In summarizes n’s place in the data
structure, allowing us to perform local modifications to n without invalidating the
rest of the data structure. Data structure operations such as insertOp, lookupOp,
and findNext are specified in terms of the node predicate. Template functions
are specified using logical atomicity, guaranteeing that they provide thread-safe
implementations of traversal, lookup, and insertion.

2.2 Flow interfaces

Flow interfaces [4] are a generic mechanism for capturing the relationship of
a single node or collection of nodes to a larger data structure, and can be
implemented in a separation logic (e.g., Iris) using ghost state. A flow interface
I abstracts a subset of nodes in a data structure into the flow of some sort of
information through that subset. A common example is the number of paths in
and out of the subset in question; for search structure templates, the relevant
flow is that of keys. A key k flows into a node n in a data structure if a search for
k will always reach n; k flows out of n to n′ if a search for k will pass through
n and move on to n′. For example, in a binary search tree whose root node n
contains key k and has left child nl, the flow interface for n will have an inflow
In.in(n) equal to the set of all possible keys, and outflow In.out(nl) equal to the
set of keys less than k. This flow captures the notion of the place where a key
“belongs” in a data structure, whether or not it is currently present in the data
structure.

Formally, given a set of nodes N and a set of possible keys K, a flow interface
I is a pair of an inflow I.in : N ⇀ 2K recording the set of keys that “flow
into” each node in I, and an outflow I.out : N ⇀ 2K recording the set of keys
that “flow out to” each successor of I, where N is the set of nodes in the data
structure and K is the set of keys. Given a node n with interface In

1, its inset
ins(In, n) := In.in(n) is the set of keys for which a search will visit node n. Its
outset to a node m, outs(In,m) := In.out(m), is the set of keys for which a
search will leave n and proceed to m, with outs(In) defined as

⋃
m outs(In,m).

Then n’s keyset ks(In, n) := ins(In, n) \ outs(In) is the set of keys that “belong”
in n, in the sense that n is the only node where they could appear/be inserted in
the data structure. The keysets of all nodes are a partition of the set of possible
keys: each key has exactly one place in the data structure where it could be
stored.
1 In general, a flow interface may contain multiple nodes; here we use a single-node

interface In as an illustrative example.
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By convention, the domain of an interface is the domain of its inflow, i.e.,
dom(I) := dom(I.in). The flow interface for a data structure is the composition
of the interfaces for its individual nodes. Two flow interfaces I1 and I2 with
disjoint domains can be composed to yield a flow interface I1 ⊕ I2 that covers
all the nodes in both of their domains. This is done by converting any outflow
between the two interfaces into “internal” flow: outflow from I1 to a node n in I2
is subtracted from I2.in(n), and vice versa. For nodes n ̸∈ dom(I1) ∪ dom(I2),
the outflow (I1⊕ I2).out(n) is simply I1.out(n)∪ I2.out(n). We can also add new
nodes to a flow interface without affecting the existing flow: an interface I ′ is
said to be a contextual extension of an interface I, written I ≾ I ′, if it differs
from I only by enlarging the domain with fresh nodes, whose outgoing edges do
not affect the outflow of the existing region. Formally, I ≾ I ′ when dom(I) ⊆
dom(I ′), I.in(n) = I ′.in(n) for all n ∈ dom(I), and I.out(n′) = I ′.out(n′) for all
n′ /∈ dom(I).

2.3 Logical atomicity

Logical atomicity [11] is used to lift a sequential data structure specification to
the concurrent setting. A logically atomic triple has the form

∀a. ⟨Pl Pp(a)⟩ c ⟨Ql Qp(a)⟩
where Pl and Ql are local preconditions and postconditions, akin to a standard
Hoare triple, while Pp and Qp are public preconditions and postconditions, param-
eterized by a shared abstract value a. This asserts that the program c atomically
updates the abstract data a from a state satisfying Pp to a state satisfying Qp,
with no intermediate states visible to any other thread. For instance, the top-
level specification for the insert operation on a (linearizable) concurrent data
structure can be written as

∀C. ⟨Ref(css) CSS(css, C)⟩
insert(css, k, v)

⟨Ref(css) CSS(css, C [k← v])⟩
where Ref is a per-thread handle to the data structure at css and CSS is a
shared assertion linking the data in memory at css to an abstract map C from
keys to values. The triple says that insert atomically updates the state of the
data structure from C to C [k← v], without mentioning the details of either the
synchronization mechanism or the underlying data structure implementation.
When the local pre- and postcondition are emp, we also write the triple as
∀a. ⟨P (a)⟩ c ⟨Q(a)⟩.

An atomic triple is proved by identifying a single linearization point for each
execution of insert where the visible state of the data structure transitions from
CSS(C) to CSS(C [k← v]). The traverse function for a template must satisfy
a logically atomic specification that says roughly “this function finds the node
where key k belongs”. The traverse specification can then be used to prove
atomic specifications for the data structure operations, lifting the sequential
specifications for insert, lookup, etc. to the concurrent setting.
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3 Compositional Implementation of Search Structure
Templates

typedef struct node {
int key; void *value;
node *next; lock_t l;

} node;

(a) Linked-list node with lock

typedef struct node {
int key; void *value;
node *left, *right; lock_t l;

} node;

(b) BST node with lock

typedef struct node {
int key; void *value;
node *next; lock_t l;
int min, max;

} node;

(c) Linked-list node with lock and range

typedef struct node {
int key; void *value;
node *left, *right; lock_t l;
int min, max;

} node;

(d) BST node with lock and range

Fig. 2: Four different node implementations

Suppose we have implemented four concurrent data structures in C: a linked
list and a binary search tree (BST), each with both the lock-coupling and give-up
synchronization patterns. Figure 2 shows the definition of the node type for each
of these implementations. All four node types include a key and value field;
linked-list nodes have a next field, while BST nodes have a left and right child.
Both kinds of nodes have a lock for synchronization; give-up nodes also have a
range (min and max) indicating the range of keys allowed in this node and its
children. In a modular approach, we should be able to define each component
separately (linked list, BST, lock-coupling, give-up), and then freely combine them
to yield these four node implementations. Furthermore, data structure functions
should only access fields from the data structure component, and concurrent
functions should only access fields from the synchronization component.

typedef struct node {
int key; void *value; node *next;

} node;

(a) Linked-list node

typedef struct node {
int key; void *value; node *left, *right;

} node;

(b) BST node

typedef struct md_entry {
lock_t l; int min, max;

} md_entry;

(c) Give-up metadata

typedef struct css {
node *root; md_table metadata;

} css;

(d) Top-level concurrent data structure

Fig. 3: Modular definition of concurrent search structures

Writing code that composes in this way is quite difficult in most languages. In
languages with multiple inheritance like C++, we could define a BST_giveup_node
that inherits fields and methods from BST_node and giveup_node, but we would
still have to declare a class for each combination of data structure and template.
Writing the template node as a wrapper around the data structure node (as done
by Nguyen et al. [6]), or vice versa, entangles the two in a way that makes both
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programming and proving less modular. For our purposes, and working in C,
we settle for a nonlocal but highly compositional approach: we store template
and data structure fields separately, with the template maintaining a hash table
that maps each data structure node to its associated template fields, as shown in
Figure 3. Each data structure implements a node type, each template implements
an md_entry type, and the top-level css type is defined once and for all.

data_struct.h

findNext
insertOp
lookupOp

bst.c list.c

template.h

traverse
insertHelper
lookupHelper

coarse.c coupling.c giveup.c template.c

Fig. 4: Implementation layout

Once we have decomposed the data structure type, we can then implement
the functions for each component. The data structure defines the local findNext,
insertOp, and lookupOp functions as operations on nodes; the template defines
traverse, along with the insertHelper and lookupHelper functions, to main-
tain metadata during update or search operations, using the details of md_entry
but treating the node type as a black box; and the top-level functions insert,
lookup, etc. are defined once and for all on css by calling the template functions,
generic in the implementation of both node (the data structure) and md_entry
(the template). The dependency graph of our examples is shown in Figure 4, with
data structures bst and list, and templates coarse, coupling, and giveup. The
.h files define the interfaces for data structures and templates, while template.c
uses those interfaces to implement the top-level operations insert and lookup,
which are identical across all instances and simply combine calls to traverse
with the corresponding template operations.

4 Specifying Data Structures and Templates as Interfaces

Our verification process for concurrent search structure templates follows the
same modular architecture as the code:

• The interface for data structures is an abstract node predicate, plus sequential
Hoare triples for the local data structure functions (findNext, insertOp,
lookupOp) that characterize their behavior at the level of nodes.

• The interface for templates takes an arbitrary data structure as a parameter
and provides logically atomic triples for the template functions (traverse,



A Formal Interface for Concurrent Search Structure Templates 9

insertHelper, lookupHelper), which lift the data structure operations to
thread-safe operations on a concurrent data structure represented by an
abstract CSS predicate defined by the template.

• The top-level insert and lookup functions are implemented and verified
once and for all, taking both a data structure and a template as a parameter.
As shown in Figure 5, each template operation is implemented simply by
calling traverse and a helper function from the template interface. Using
the template interface’s specifications, we can prove that these insert and
lookup functions satisfy atomic specifications on CSS:

∀C. ⟨CSS(css, C)⟩ insert(css, x, v) ⟨CSS(css, C [x← v])⟩
∀C. ⟨CSS(css, C)⟩ lookup(css, x) ⟨v. CSS(css, C) ∧ C(x) = v⟩

1 void insert(css *css, int x, void *v) {
2 ... // initialize pn
3 traverse(css, pn, x);
4 insertHelper(css, pn->p, x, v);
5 free(pn);
6 }

1 void *lookup(css *css, int x) {
2 ... // initialize pn
3 Status stt = traverse(css, pn, x);
4 void *v = lookupHelper(css, pn->p, x, stt);
5 free(pn);
6 return v;
7 }

Fig. 5: Structure of the top-level operations

In this section, we present our specifications for the data structure and tem-
plate functions. The structure of the specifications guarantees compositionality:
if we have m data structures that satisfy the data structure interface, and n
templates that satisfy the template interface, we can freely combine them to get
m×n verified concurrent search structures. Each of our interfaces is implemented
as a typeclass in Rocq, which makes it easy to do proofs over a generic instance
of the interface.

A key feature of the separation between data structure and concurrency
template is that data structure operations are purely local, taking effect on a single
node and possibly its immediate children, while the template is entirely responsible
for moving through the data structure. This means that the specifications for
data structures must not talk about the state of the data structure as a whole,
but only about local properties that can later be slotted into a global description
at the template level. We follow Krishna et al. [3] in modeling this separation
using flow interfaces [4] to characterize a node’s contributions to the overall
structure.

4.1 Data Structure Interface

Figure 6 illustrates the formal interface for data structure components, which
perform sequential, local operations on pieces of a data structure. At the center
is the node representation predicate node (n, In, Cn), where n is the concrete
pointer to the node, In is the flow interface for the node, and Cn is the contents
of the node (a map from keys to values). In practice, node will be implemented as
a combination of concrete points-to predicates for the physical node in memory,
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and ghost state representing the node’s contribution to the abstract state of the
data structure. Surrounding it are the Hoare-style specifications of the three core
operations, findNext, lookupOp, and insertOp, each of which acts on nodes.

node (n, In, Cn)

{
node (n, In, Cn) ∗ x ∈ ins(In, n) ∗m 7→ _ ∗ (n ̸= NULL)

}
findNext(node *n, node **m, int x)

v. ∃ next . node (n, In, Cn) ∗
match v with
| F⇒ x ∈ dom(Cn) ∗ x /∈ outs(In) ∗m 7→ _
| NF⇒ x /∈ dom(Cn) ∗ x /∈ outs(In) ∗m 7→ NULL
| CTN⇒ x /∈ dom(Cn) ∗ x ∈ outs(In,next) ∗m 7→ next
end


{
node (n, In, Cn)

}
lookupOp(node *n, int x)
v. node (n, In, Cn) ∗
v = match Cn(x) with
| Some v ⇒ v | None⇒ NULL
end


{
node (n, In, Cn) ∗ x ∈ ks(In, n)

}
insertOp(node *n, int x, void *v)
n1. ∃ I1, I0, C1, C0.

if n1 = NULL then node (n, In, Cn [x← v]) else{
node (n1, I1, C1) ∗ node (n, I0, C0) ∗ x /∈ dom(Cn) ∗
ks(In, n) = ks(I0, n) ⊎ ks(I1, n1) ∗ In ≾ (I0 ⊕ I1) ∗ Cn [x← v] = C0 ⊎ C1 ∗ · · ·



find
Next

lookupOp

insertOp

Fig. 6: Data structure interface: predicates and specifications

The findNext function is used to traverse the data structure and find where
a key belongs. It takes a node n and a key x and returns one of three possible
results: found (F), not found (NF), or continue (CTN). F indicates that the key x is
present in n. NF indicates that x is definitively not present in the data structure
at n: it is not in n and is also guaranteed not to appear in n’s successors. Finally,
CTN means that x is not in n, but may be present in one of n’s successors next ,
which is stored in the pointer m. We use flow interfaces to capture the idea
that the key x “belongs” in n or its successors: x must initially be in the inset
ins(In, n), and in the CTN case is also present in the outset outs(In,next) from n
to next , while in the other cases it is not in any of n’s outsets—thus implying
that it is in the keyset ks(In, n) of n.

The lookupOp function simply looks up the key x in the node n, and returns
its value if it is present, or NULL if it is not. Because it does not change the data
structure, it does not need to interact with flow interfaces.

The insertOp function inserts the key x and value v at the given node n,
which is valid when x belongs at n, i.e., it is in n’s inset and not in any of its
outsets. The function has two cases to consider. First, x may already be present
in n; in this case, insertOp simply changes the value at x to v. Otherwise, it
creates a new node n1 containing x and v and adds it to the data structure,
changing internal pointers and flow interfaces as necessary. The visible effect
of this is to associate the original node n and the new node n1 with new flow
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interfaces I0, I1 and key-value maps C0, C1, which between them contain both
the original contents of n and the new mapping from x to v2. The keyset and
flow of n in In are split across I0, the new interface for n, and I1, the interface
for the newly created node n1. The combined interface of the two nodes, I0 ⊕ I1,
must be a contextual extension of the original interface In (i.e., In ≾ (I0 ⊕ I1)),
ensuring that the remainder of the data structure is not affected by replacing
n with the combination of n and n1. The specific distribution of keys between
n and n1 is determined by the data structure; we might wish to allow it to
be arbitrary, but we will see in Section 6.2 that some templates depend on
specific constraints on this distribution, so we must include those constraints
in our interface specification for insertOp. For the time being we write these
constraints as · · · , and explain them in detail in Section 6.2.

4.2 Template Interface

Figure 7 presents the concurrency template interface, which gives logically atomic
specifications for three operations: traverse, insertHelper, and lookupHelper.
The interface relies on four abstract predicates: is_root(n), InFP(n, p, lk),
CSS(css, C), and md_node (n, p,Rn, css, r). The predicate is_root(n) identifies
the root node of the structure. The predicate InFP(n, p, lk) asserts that n belongs
to the data structure, recording its metadata pointer p and lock lk . The predicate
CSS(css, C) describes the abstract state of the entire concurrent data structure at
pointer css as a key-value map C. Finally, md_node (n, p,Rn, css, r) represents
a node together with its concurrency metadata: n is the pointer to the node,
p the pointer to its metadata, css the pointer to the top-level data structure,
and r the root node of the data structure. At the template level, the abstract
state of a node is a metadata record Rn containing a flow interface Rn.I and
a contents map Rn.C. To ensure modularity, all metadata (locks, ranges, etc.)
must be stored in md_node rather than node, and templates must only interact
with nodes via the data structure interface functions.

With the above predicates in place, we now turn to the specifications of
the template operations. The traverse function is the core of a concurrency
template: it takes a concurrent data structure css and a key x, and returns the
node in the data structure where x belongs. Specifically, it uses a struct pn to
track a pair of nodes: typedef struct pn { struct node *p; struct node *n; } pn;
where the n field is initialized to the root of the data structure, and by the end of
traverse the p field is set to a node n′ such that x ∈ ks(In′ , n′). The function
also returns an enum value that is either F if x is present in n′ or NF if it is not.
The specification of traverse is a logically atomic triple because it accesses the
shared state of the data structure CSS(css, C), but it does not modify the data
structure at all.

As shown in Figure 5, the top-level insert and lookup operations are realized
by first invoking traverse to locate the appropriate node n′, and then applying
2 Our implementation also includes a special case for initializing an empty data

structure, which we omit for readability here and in the following functions; its logic
is in general a simpler form of that for the new-node case.
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is_root(n) InFP(n, p, lk) CSS(css, C) md_node (n, p,Rn, css, r)

∀C. ⟨InFP(n, p, lk) ∗ pn 7→ (NULL, n) ∗ is_root(n) CSS(css, C)⟩
traverse(css *css, pn *pn, int x)

⟨ stt. ∃n
′, p′, lk ′, Rn′ , r′. x ∈ ks(Rn′ .I, n′) ∗

InFP(n′, p′, lk ′) ∗md_node (n′, p′, Rn′ , css, r′) ∗ pn 7→ (n′,_) ∗
match stt with
| F⇒ (n′ ̸= NULL) ∗ (x ∈ dom(Rn′ .C)) | NF⇒ (x /∈ dom(Rn′ .C))
end

CSS(css, C)⟩
∀C. ⟨x ∈ ks(Rn.I, n) ∗ InFP(n, p, lk) ∗md_node (n, p,Rn, css, r) CSS(css, C)⟩
insertHelper(css *css, node *n, int x, void *v)

⟨CSS(css, C [x← v])⟩

∀C. ⟨ x ∈ ks(Rn.I, n) ∗ InFP(n, p, lk) ∗md_node (n, p,Rn, css, r) ∗
match stt with
| F⇒ (n ̸= NULL) ∗ (x ∈ dom(Rn.C)) | NF⇒ (x /∈ dom(Rn.C))
end

CSS(css, C)⟩
lookupHelper(css *css, node *n, int x, Status stt)

⟨v. v = match C(x) with
| Some v ⇒ v | None⇒ NULL
end

CSS(css, C)⟩

insertHelper
lo
ok
up
He
lp
er

traverse

Fig. 7: Concurrency template interface: predicates and specifications

a helper function that performs the actual update (for insertion) or query (for
lookup) at that node. The helper functions are responsible for modifying the
underlying data structure (using insertOp or lookupOp from the data structure
interface) and updating the metadata (creating new locks, modifying ranges,
etc.) to create a consistent concurrent data structure for the new state. Both
insertHelper and lookupHelper are specified with atomic triples that take the
postcondition of traverse as their private precondition (although insertHelper
ignores the F/NF distinction), and in their postcondition perform the desired
operation. For insertHelper this means atomically adding the mapping of key
x to value v to the data structure; for lookupHelper this means returning the
value associated with x, if one exists.

4.3 Top-Level Operations

Given instances of the data structure and template interfaces, we can define
and verify the top-level insert and lookup operations for concurrent search
structures, shown in Figure 8.

Figure 8a shows the implementation of the insert function for the template
algorithms. It first calls traverse to locate the node at which the key x should
be inserted. Once the appropriate position is found, it invokes insertHelper
to insert key x and value v at that node. The lookup function follows a similar
procedure, except that it invokes lookupHelper to retrieve the value v associated
with the key x and returns this value.
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1 void insert(css *css, int x, void *v) {
2 struct pn *pn = malloc(sizeof(*pn));
3 pn->p = NULL;
4 pn->n = get_root(css);
5 Status stt = traverse(css, pn, x);
6 insertHelper(css, pn->p, x, v);
7 free(pn);
8 }

(a) The top-level insert function

1 void *lookup(css *css, int x) {
2 struct pn *pn = malloc(sizeof(*pn));
3 pn->p = NULL;
4 pn->n = get_root(css);
5 Status stt = traverse(css, pn, x);
6 void *v = lookupHelper(css, pn->p, x, stt);
7 free(pn);
8 return v;
9 }

(b) The top-level lookup function

Fig. 8: Top-level concurrent data structure operations

⟨CSS(css, C)⟩
1 void insert (css *css, int x, void *v) {
2 struct pn *pn = malloc(sizeof(*pn));
3 pn->p = NULL;
4 pn->n = get_root(css);
5

{
∃p, lk. is_root(n) ∗ InFP(n, p, lk) ∗ pn 7→ (NULL, n)

}
6 Status status = traverse(css, pn, x);
7

{
∃n′

, p
′
, lk

′
, Rn′ , r

′
. x ∈ ks(Rn′ .I, n

′
) ∗ InFP(n′

, p
′
, lk

′
) ∗ md_node (n′

, p
′
, Rn′ , css, r

′
) ∗ pn 7→ (n

′
, _)

}
8 insertHelper(css, pn->p, x, v);

{
pn 7→ (n

′
, _)

}
9 free(pn);

{
emp

}
10 } ⟨CSS(css, C [x← v])⟩

Fig. 9: Proof outline of the top-level insert function

Figure 9 presents the proof outline for the top-level insert function. The proof
follows directly from the specifications of traverse and insertHelper, since the
postcondition of traverse matches the precondition of insertHelper. The call
to traverse identifies the node n′ where the key x should be inserted, acquires
ownership of it via md_node, and stores it in pn->p. The call to insertHelper
is the function’s linearization point, atomically adding the mapping from key x
to value v to the data structure. The proof for lookup is similar.

Importantly, these proofs rely only on the specifications of the template
functions, and so are equally valid for any combination of data structure and
template instance. In Rocq, the top-level proofs are parameterized by instances
of DataStructure and Template typeclasses containing these specifications. This
guarantees the compositionality we are aiming for: we know that for any data
structure implementation meeting the data structure interface, and any template
meeting the template interface, we can instantiate these parameterized proofs
and obtain verified insert and lookup functions.

5 Data Structure Instances: Binary Search Tree and
Linked List

An instance of the data structure interface consists of verified implementations
of the node type and the findNext, insertOp, and lookupOp operations for the
data structure. In this section, we demonstrate two such instances. As described
in Section 4.1, we represent each node type with a predicate node (n, In, Cn) that
connects the actual data in n to a flow interface In describing the keys that
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belong in n and its successors, and a key-value map Cn describing the keys and
values present in n. We then prove that each function meets its specification in
the interface.

5.1 Binary Search Tree

typedef struct node{ int key; void *value; node *left, *right; } node;

node (n, In, Cn) :=
In.in = λ0 ∗ In.out = λ0 ∗ Cn = ∅ if n = NULL

∃ x, v, left , right . n 7→ (x, v, left , right) ∗ dom(In) = {n} ∗ x ∈ ins(In, n) ∗ Cn = [x← v] ∗ if n ̸= NULL(
In.out = (left = NULL ? ∅ : [left←{ y ∈ ins(In, n) | y < x }])∪

(right = NULL ? ∅ : [right←{ y ∈ ins(In, n) | y > x }])
)

Fig. 10: The node definition for BST

The node implementation and corresponding predicate for a BST are shown
in Figure 10. There is a special case for NULL, which represents a nonexistent
node with no inflow or outflow (i.e., its flows are the zero function λ0 := (λk. 0))
and no contents. Otherwise, the node predicate for a node n includes physical
ownership of the node struct (n 7→ (x, v, left , right)) along with information about
the contents Cn and flow interface In of the node. The contents are simply [x← v],
where x and v are the contents of the key and value field respectively—each BST
node holds one key-value pair. The node’s inset must include x, guaranteeing that
traversal operations looking for x will reach n rather than going down another
branch. Finally, the node’s outsets must follow the BST structure: the left child
(if it exists) receives all keys from n’s inset that are less than x, and the right child
(if it exists) receives all keys greater than x. These flow properties amount to a
local characterization of a BST—if we know that each node in a data structure
has these properties, then we are guaranteed that the data structure as a whole
is indeed a BST.

1 Status findNext(node *n, node **m, int x) {
2 if (x < n->key) {
3 *m = n->left;
4 if (!*m) return NF;
5 else return CTN;
6 }
7 else if (x > n->key) {
8 *m = n->right;
9 if (!*m) return NF;

10 else return CTN;
11 }
12 else return F;
13 }

(a) The findNext of the BST

1 node *insertOp(node *n, int x, void *v) {
2 if (n->key == x) {
3 n->value = v;
4 return NULL;
5 }
6 node *nn = make_node(x, v);
7 if (x < n->key) n->left = nn;
8 else n->right = nn;
9 return nn;

10 }

(b) The insertOp of the BST

Fig. 11: Operations of the data structure instances

The BST’s findNext function (Figure 11a) determines whether the key x
resides in the current node n or should be found in the left or right subtree.
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As discussed in Section 4.1, the function returns one of three possible cases: F
(found), NF (not found), or CTN (continue). For the BST, x is found if it is present
in the node; otherwise, we compare it with n’s key and check the corresponding
child, returning NF if the child is absent or CTN if it is present.

The BST’s insertOp function (Figure 11b) handles two cases. First, if n
already contains x, we simply set n’s value to v. Otherwise, we create a new node
and insert it as either the left or right child of n, depending on whether x is less
than or greater than n’s key. When we create a new node, we return a pointer
to that node; when we update an existing node, we return NULL instead. The
lookupOp function (not shown) simply returns the value field of the target node.
Note that all of these functions are local to a single node; traversal will be left
entirely to the concurrency template.

{
node (n, In, Cn) ∗ x ∈ ks(In, n)

}
1 node *insertOp(node *n, int x, void *v) {
2 //open node (n, In, Cn)
3

{
∃x0, v0, l, r . n 7→ (x0, v0, l, r) ∗ dom(In) = {n} ∗ x0 ∈ ins(In, n) ∗ Cn = [x0← v0] ∗ · · ·

}
4 if (n->key == x) {
5 n->value = v;
6

{
n 7→ (x, v, l, r) ∗ dom(In) = {n} ∗ x ∈ ins(In, n) ∗ Cn = [x← v0] ∗ · · ·

}
⇛

{
node (n, In, Cn [x← v])

}
7 return NULL;
8 }
9 node *nn = make_node(x, v);

10
{
nn 7→ (x, v, NULL, NULL) ∗ n 7→ (x0, v0, l, r) ∗ · · ·

}
11 if (x < n->key) {
12 n->left = nn;
13

{
(x < x0) ∗ nn 7→ (x, v, NULL, NULL) ∗ n 7→ (x0, v0,nn, r) ∗ · · ·

}
14 //let (I0, I1) := send { x ∈ ins(In, n) | x < x0 } from n to nn
15 //close node (nn, I1, [x← v]), node (n, I0, Cn)
16 }
17 else n->right = nn;
18 return nn;
19 } 

n1.∃ I1, I0, C1, C0.
if n1 = NULL then node (n, In, Cn [x← v]) else{
node (n1, I1, C1) ∗ node (n, I0, C0) ∗ x /∈ dom(Cn) ∗
ks(In, n) = ks(I0, n) ⊎ ks(I1, n1) ∗ In ≾ (I0 ⊕ I1) ∗ Cn [x← v] = C0 ⊎ C1


Fig. 12: Proof outline of the BST insertOp function

Figure 12 illustrates the proof of the BST insertOp function. When the key
x is already present in n, we unfold the predicate node (n, In, Cn) and replace its
original value v0 with v; this does not affect the flows and so the node predicate
is restored with the new value in its contents. Otherwise, we add a new node
nn with key x and value v as either the left or right child of n. In either case,
the changes to values in memory are straightforward, but to establish the node
predicates in the postcondition, we must also find new flow interfaces I1, I0 and
content maps C1, C0 that capture the splitting of keys across n and nn. In a
BST, as we saw in the definition of node, the flow from n to its left child must
be precisely {x ∈ ins(In, n) | x < x0 }, the subset of n’s inflow that is less than
n’s key x0. Adding these keys to the outflow of n and the inflow of nn yields
precisely the new flow interfaces that we need. Finally, we must show that this
new configuration of flows (I0 ⊕ I1) contextually extends the original interface



16 Duc-Than Nguyen and William Mansky

In (i.e., In ≾ (I0 ⊕ I1)); this is true because the inflow to n is unchanged and
there are no new outflows to any previously existing nodes. This proof shows how
flow interfaces abstract the details of the data structure into generic information
about the distribution of keys, which can then be used by the template functions;
the primary challenge in data-structure-side verification is then to come up with
the right flow interfaces.

5.2 Linked List

typedef struct node{ int key; void *value; node *next; } node;

node (n, In, Cn) :=
In.in = λ0 ∗ In.out = λ0 ∗ Cn = ∅ if n = NULL

∃ x, v,next . n 7→ (x, v,next) ∗ dom(In) = {n} ∗ x ∈ ins(In, n) ∗ Cn = [x← v] ∗ if n ̸= NULL
In.out = (next = NULL ? ∅ : [next←{ y ∈ ins(In, n) | y > x }])

Fig. 13: The node definition for linked list

The second data structure we consider is a sorted linked list traversed via
linear search. Its node predicate is similar to the BST’s, but with a simpler
outflow, with only one possible child that holds only larger keys. Its findNext
function (Figure 14a) is likewise similar, but if we reach a node with a key greater
than the target key x, we simply return NF: if we have passed the point where x
would appear in the list, then it cannot be present in the list at all.

1 Status findNext(node *n, node **m, int x) {
2 if (x > n->key) {
3 *m = n->next;
4 if (!*m)
5 return NF;
6 else
7 return CTN;
8 }
9 else if (x < n->key)

10 return NF;
11 else
12 return F;
13 }

(a) The findNext of the linked list

1 node *insertOp(node *n, int x, void *v) {
2 if (n->key == x) {
3 n->value = v;
4 return NULL;
5 }
6 node *nn = make_node(x, v);
7 if (x < n->key) {
8 nn->next = n->next;
9 n->next = nn;

10 swap(n->key, nn->key);
11 swap(n->value, nn->value);
12 }
13 else n->next = nn;
14 return nn;
15 }

(b) The insertOp of the linked list

Fig. 14: Operations of the linked list instance

The insertOp function (Figure 14b) differs somewhat more from its BST
analogue. The case for an already-existing key is the same, as is the case where
x > n->key. However, when x < n->key, we need to insert the x before n->key
to maintain sortedness. For convenience, we do this by inserting nn after n and
then swapping their contents, so that the inflow to n remains unchanged. With
this approach, the proof outline of the linked list’s insertOp is very similar to
that of the BST; the main effort is in showing that both insertion before and
insertion after constitute contextual extensions of the flow interface.
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6 Template Instances: Lock Coupling and Give-Up

As described in Section 4.2, a concurrency template implements a type for per-
node metadata/synchronization, a traverse function for finding the node where
a key “belongs”, and functions insertHelper and lookupHelper that lift the
sequential data structure operations to thread-safe concurrent operations. Our
concurrent data structures are implemented as

typedef struct css { node *root; md_table metadata; } css;
where the md_table maps each node* pointer to an md_entry, a type defined
differently by each template3. In both of our example templates, the per-node
metadata includes a lock that protects the contents of the node. We write
inv_for_lock (ℓ, R) to indicate that lock ℓ is associated with a predicate R,
called the lock invariant—this means that any thread acquiring ℓ gains resources
satisfying R, and must restore R upon release.

6.1 Lock-coupling Template

The first template we consider is lock coupling (also called hand-over-hand
locking), in which threads use the locks on each node to prevent interference
from other threads during traversal. Each thread always holds at least one lock,
and acquires the lock on the next node before releasing its current lock, ensuring
that other threads cannot invalidate the ongoing search.

The lock-coupling template’s metadata for each node is simply its lock:
typedef struct md_entry { lock_t lock; } md_entry;

The lock-coupling pattern can be seen on lines 15-16 of Figure 15a, where
traverse acquires the next node’s lock and then releases the current node’s
lock. The rest of the function simply repeatedly calls the findNext function from
the data structure interface, which returns either found (F), not found (NF), or
continue (CTN); in the first two cases traverse returns this status, while on CTN
it continues to traverse the data structure.

Figure 15c shows the implementation of insertHelper for the lock-coupling
template. The function is intended to be called after traverse, which identifies
a suitable node n at which to insert the key x and acquires the lock on n.
The function begins by calling insertOp to perform the insertion in the data
structure at node n. If insertOp returns NULL (indicating that the key x was
already present in n), insertHelper then immediately releases the lock on n
and returns. Otherwise, a new node has been added, so insertHelper needs
to create metadata for the new node by allocating a new md_entry and then
initializing its lock field with a new lock new_lock (makelock() returns a new
lock in the held state). Finally, we release both the new lock and the lock on n.

3 The md_table type can be implemented with any kind of map, and does not need to
be thread-safe, since each entry is initialized when the corresponding node is allocated
and thereafter treated as read-only. For simplicity, our implementation uses a naïve
hash table and assumes the absence of collisions, since writing a collision-free hash
table is orthogonal to our contributions.
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1 Status traverse(css *css, pn *pn, int x) {
2 Status stt = NF;
3 md_entry *md_n = lookup_md(css, pn->n);
4 md_entry *md_p;
5 acquire(md_n->lock);
6 for ( ; ; ) {
7 pn->p = pn->n;
8 stt = findNext(pn->p, &pn->n, x);
9 if (stt == F) break;

10 else if (stt == NF) break;
11 else {
12 md_n = lookup_md(css, pn->n);
13 md_p = lookup_md(css, pn->p);
14 acquire(md_n->lock);
15 release(md_p->lock);
16 }
17 }
18 return stt;
19 }

(a) The traverse method of the lock-
coupling template algorithm

1 void insertHelper(css *css, node *n,
2 int x, void *v) {
3 node *new_node = insertOp(n, x, v);
4 md_entry *md = lookup_md(css, n);
5 lock_t parent_lock = md->lock;
6 if (!new_node) {
7 release(parent_lock);
8 return;
9 }

10 md_entry *new_md = malloc(sizeof(md_entry));
11 lock_t new_lock = makelock();
12 new_md->lock = new_lock;
13
14 set_md(css, n, new_md);
15 release(new_lock);
16 release(parent_lock);
17 }

(c) The insertHelper method of the lock-
coupling template algorithm

1 Status traverse(css *css, pn *pn, int x) {
2 Status stt = NF;
3 node *p = pn->n;
4 for ( ; ; ) {
5 md_entry *md = lookup_md(css, pn->n);
6 acquire(md->lock);
7 pn->p = pn->n;
8 if (inRange(md, x)) {
9 stt = findNext(pn->p, &pn->n, x);

10 if (stt == F) break;
11 else if (stt == NF) break;
12 else release(md->lock);
13 }
14 else {
15 release(md->lock);
16 pn->n = p;
17 }
18 }
19 return stt;
20 }

(b) The traverse method of the give-up
template algorithm

1 int inRange(md_entry *m, int x) {
2 if (x > m->min && x < m->max) return 1;
3 else return 0;
4 }

(d) The inRange method of the give-up
template algorithm

1 void *lookupHelper(css *css, node *n,
2 int x, Status stt) {
3 void *v;
4 md_entry* md = lookup_md(css, n);
5 lock_t parent_lock = md->lock;
6 if(stt == F) v = lookupOp(n, x);
7 else v = NULL;
8 release(parent_lock);
9 return v;

10 }

(e) The lookupHelper method for both
template algorithms

Fig. 15: Operations of the concurrency templates

The lookupHelper function for the lock-coupling template is shown in Fig-
ure 15e. Its behavior depends on the status returned from traverse: if the status
is F then we get the value in node n using lookupOp, while if it is NF the value is
NULL (since the target key x was not found in the data structure). Either way,
the function then releases the lock and returns the value found.

While the proofs of data structure instances only involve real memory and
logical flow interfaces, the proofs of concurrency templates make extensive use of
ghost state to track the relationship between individual nodes and the abstract
data structure as a whole. Our representation predicate CSS, shown in Figure 16,
largely follows that of Krishna et al. [3], but with metadata explicitly stored in a
hash table h, and with some adaptations to our more realistic setting (we include
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h : val→ val N : val ⇀ (val × val) Rn := (In, Cn)

φ(r, I) := I.in (r) = KS ∗ I.out = λ0

InFP(n, p, lk) :=∃N.N(n) = (p, lk) ∗ ◦N γf

own_nodes (γf , I, h) :=∃N.dom(N) = dom(I) ∗ •N γf ∗

(∀n, p, lk . N(n) = (p, lk)⇒ h(n) = p)

md_node (n, p,Rn, css, r) := node (n, In, Cn) ∗ ◦ In
γI ∗ ◦ (ks(In, n), dom(Cn))

γk ∗ ◦ (Ex Cn)
γm

CSS(css, C) :=∃I, h, r. • I γI ∗ • (KS,dom(C))
γk ∗ • (Ex C)

γm∗

own_nodes (γf , I, h) ∗ φ(r, I) ∗ hashtable(h) ∗

∗
n∈dom(I)

(
∃p, lk , Rn. InFP(n, p, lk) ∗ p.lock 7→2 lk ∗

inv_for_lock (lk ,md_node (n, p,Rn, css, r))

)

Fig. 16: Definition of CSS and related predicates in the lock-coupling proof

values in nodes as well as keys, for instance, and our data is explicitly laid out
in C structs). We make heavy use of the authoritative pattern of ghost state,
where an element • a γ

characterizes the overall abstract state, and individual
contributors hold fragments ◦ bn

γ
with the restriction that the combination of

all fragments yields exactly the overall state. The specific kinds of ghost state we
use are as follows:

• The node ghost state γf maps nodes in the data structure to their correspond-
ing metadata and lock pointers. We use this to construct the membership
predicate InFP, which asserts that a node n belongs to the data structure,
and the own_nodes predicate, which holds the authoritative map of all nodes
in the data structure and their corresponding locks and metadata pointers.

• The flow interface ghost state γI collects the flow interfaces for every node;
the top-level interface I is the composition of all per-node flows In.

• The keyset ghost state γk holds pairs (K, k), where K is the set of keys that
“belong” in a node (the keyset ks for an individual node, the full set of possible
keys KS for the data structure as a whole) and k is the set of keys actually
present in the data structure. This is an important distinction—if, e.g., the
key 3 is not present in a data structure, then it will not be in the mapping C
from keys to values, but it will still be present in both the top-level keyset KS
and the keyset of some specific node where 3 could be inserted. The keysets
of the individual nodes partition the space of possible keys, and the actual
contents C are the combination of all the per-node contents Cn.

• The mapping ghost state γm holds the key-value mapping for each node and
for the data structure as a whole. This is separate from the keyset ghost state
because the keysets mention only keys, not values.

All of this ghost state is used in the definition of md_node (n, p,Rn, css, r),
which connects a node with all its per-node ghost state. The predicate for the
data structure as a whole, CSS, collects four pieces:

• The authoritative parts of each kind of ghost state, describing the top-level
abstract state of the data structure.

• Global properties on the data structure: for instance, φ(r, I) ensures that the
inflow at the root node r is the full keyset KS and that no flow leaves the
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∀C. ⟨InFP(n, p, lk) ∗ pn 7→ (NULL, n) ∗ is_root(n) CSS(css, C)⟩
1 int traverse(css *css, pn *pn, int x) {
2 Status stt = NF;
3 md_entry *md_n = lookup_md(css, pn->n);
4 md_entry *md_p;
5 acquire(md_n->lock);
6

{
x ∈ ins(Rn.I, n) ∗ md_node (n, p,Rn, css, r) ∗ · · ·

}
⇛

{
traverse_inv

}
7 for ( ; ; ) {

{
traverse_inv

}
8 pn->p = pn->n;
9

{
x ∈ ins(Rn′ .I, n

′
) ∗ md_node (n′

, p
′
, Rn′ , css, r

′
) ∗ pn 7→ (n

′
, n

′
) ∗ · · ·

}
10 stt = findNext(pn->p, &pn->n, x);
11 if (stt == F) break;
12

{
x ∈ ks(Rn′ .I, n

′
) ∗ x ∈ dom(Rn′ .C) ∗ md_node (n′

, p
′
, Rn′ , css, r

′
) ∗ pn 7→ (n

′
, n

′
) ∗ · · ·

}
13 else if (stt == NF) break;
14

{
x ∈ ks(Rn′ .I, n

′
) ∗ x /∈ dom(Rn′ .C) ∗ md_node (n′

, p
′
, Rn′ , css, r

′
) ∗ pn 7→ (n

′
,m) ∗ · · ·

}
15 else {
16

{
x ∈ outs(Rn′ .I,m) ∗ x /∈ dom(Rn′ .C) ∗ md_node (n′

, p
′
, Rn′ , css, r

′
) ∗ pn 7→ (n

′
,m) ∗ · · ·

}
17 md_n = lookup_md(css, pn->n);
18 md_p = lookup_md(css, pn->p);
19 acquire(md_n->lock);
20

{
x ∈ ins(Rm.I,m) ∗ md_node (m, q,Rm, css, rq) ∗ md_node (n′

, p
′
, Rn′ , css, r

′
) ∗ · · ·

}
21 release(md_p->lock);
22

{
x ∈ ins(Rm.I,m) ∗ md_node (m, q,Rm, css, rq) ∗ · · ·

}
⇛

{
traverse_inv

}
23 }
24 }
25 return stt;
26 }

⟨ stt. ∃n
′, p′, lk ′, Rn′ , r′. x ∈ ks(Rn′ .I, n′) ∗

InFP(n′, p′, lk ′) ∗md_node (n′, p′, Rn′ , css, r′) ∗ pn 7→ (n′,_) ∗
match stt with
| F⇒ (n′ ̸= NULL) ∗ (x ∈ dom(Rn′ .C)) | NF⇒ (x /∈ dom(Rn′ .C))
end

CSS(css, C)⟩
Fig. 17: Proof outline of the lock-coupling traverse function

data structure, and own_nodes requires that each node’s metadata pointer p
is exactly the pointer associated with it in the hash table h.

• The representation predicate of the hash table h itself.
• A per-node assertion for each node in the top-level flow interface I. Specifically,

each node’s metadata must contain a lock lk that protects the md_node for
that node. We use a persistent points-to assertion p.lock 7→2 lk to indicate
that the lock is shared among all threads.

Taken together, these pieces connect the abstract key-value map C with a concrete
pointer css, forming the top-level representation predicate that will be used in
the specifications of the template functions.

The proof of the traverse function is outlined in Figure 17. The goal of the
function is to find and acquire the lock on a node n′ such that x ∈ ks(Rn′ .I, n′)
(i.e., n′ is the node where x belongs), returning F if x is present in n′ and NF if it is
not. We begin with the root node n in pn->n. First, we establish x ∈ ins(Rn.I, n),
which is the key property we will maintain throughout traverse: we are in the
right part of the data structure to find the key x. Since n is the root, this follows
directly from the global property φ(n, I) of CSS. We then acquire n’s lock and
obtain md_node for the current node pn->n (line 6). Now, we begin the main
loop. The loop’s invariant includes both ownership of the md_node assertion for
pn->n and the property that x is in the inset of n:
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∀C. ⟨x ∈ ks(Rn.I, n) ∗ InFP(n, p, lk) ∗md_node (n, p,Rn, css, r) CSS(css, C)⟩
1 void insertHelper(css *css, node *n, int x, void *v) {
2

{
∃In, Cn. (In = Rn.I ∧ Cn = Rn.C) ∗ node (n, In, Cn) ∗ ◦ In

γI ∗ ◦ (ks(In, n), Cn)
γk ∗ ◦ (Ex Cn)

γm ∗ · · ·
}

3 node *nn = insertOp(n, x, v);

4



(
∃n1, I1, I0, C1, C0. if n1 = NULL then node (n, In, Cn [x← v]) else

node (n1, I1, C1) ∗ node (n, I0, C0) ∗ x /∈ dom(Cn) ∗ In ≾ (I0 ⊕ I1)
)
∗

◦ In
γI ∗ ◦ (ks(In, n), Cn)

γk ∗ ◦ (Ex Cn)
γm ∗ · · ·


5 md_entry *md = lookup_md(css, n);
6 lock_t parent_lock = md->lock;
7 if (!nn) { release(parent_lock); return; }
8 md_entry *new_md = malloc(sizeof(md_entry));
9 lock_t new_lock = makelock();

10 new_md->lock = new_lock;
11 set_md(css, n, new_md);
12 //Linearization point, open CSS(css, C)

13

{
node (nn, I1, C1) ∗ node (n, I0, C0) ∗ • I

γI ∗ ◦ In
γI ∗ • (Ex C)

γm ∗ ◦ (Ex Cn)
γm∗

• (KS, dom(C))
γk ∗ ◦ (ks(In, n), dom(Cn))

γk ∗ · · ·

}
⇛

14


∃I′

. node (nn, I1, C1) ∗ node (n, I0, C0) ∗ • I′ γI ∗ ◦ I0
γI ∗ ◦ I1

γI ∗

• (Ex (C [x← v]))
γm ∗ ◦ (Ex Cn)

γm ∗ ◦ (Ex ([x← v]))
γm∗

• (KS, dom(C [x← v]))
γk ∗ ◦ (ks(I0, n), dom(Cn))

γk ∗ ◦ (ks(I1,nn), {x})
γk ∗ · · ·


15 //Close CSS(css, C [x← v]), prove postcondition
16

{
md_node (n, p,Rnp , css, r

′
) ∗ md_node (nn,nnp, Rnn , css, r

′
)
}

17 release(new_lock);
18 release(parent_lock);

{
emp

}
19 } ⟨CSS(css, C [x← v])⟩

Fig. 18: Proof outline of the lock-coupling insertHelper function

traverse_inv(css, pn, x ) := ∃ n,m, p, lk , Rn, r.

x ∈ ins(Rn.I, n) ∗ InFP(n, p, lk) ∗md_node (n, p,Rn, css, r) ∗ pn 7→ (m,n) ∗ p.lock 7→2 lk

In each iteration, we update pn->p to the current pn->n (denoted n′) and call
findNext to locate the next node to traverse. If findNext returns F or NF, the
traversal terminates, and we learn that x is either present in n′ or not in the
data structure at all; in either case, we know x ̸∈ outs(Rn′ .I), which combined
with x ∈ ins(Rn′ .I, n′) yields x ∈ ks(Rn′ .I, n′)—there is no successor of n′ where
we should look for x, so x belongs in n′. Otherwise, if findNext returns CTN, we
learn that x ∈ outs(Rn′ .I,m) for some successor m stored in pn->n. We then
proceed to m by lock coupling. First, we acquire the lock on pn->n and obtain
the md_node for m. Since m is a successor of n′, the outflow from n′ is received
as inflow to m, so x ∈ ins(Rm.I,m), as expressed in line 20. We then release
the lock on the old node pn->p, relinquishing ownership of it while retaining
ownership of the successor m, thereby completing the lock coupling (line 22).
This lock coupling has ensured that the link between the nodes remains intact
while we traverse it, and we can reestablish traverse_inv for the new values in pn.

The proof of insertHelper is outlined in Figure 18. Given the md_node
predicate for a node n such that x ∈ ks(Rn.I, n), it atomically inserts the mapping
from x to v into the data structure. We begin by calling the data structure’s
insertOp, whose postcondition is shown in line 4. This either modifies the existing
value in n (when n’s key is x), or inserts a new node nn with key x and value v.
In the former case, nn is NULL, and all we need to do is update the mapping ghost
state γm with the new key-value binding and release the lock on n. Otherwise, we
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need to allocate new metadata for nn and update the ghost state to reflect that
the extended structure implements C [x← v], where C is the abstract state of the
data structure immediately before the linearization point. At the linearization
point, we open CSS(css, C) and perform frame-preserving updates on each pair
of authoritative and fragment ghost state, shown in the proof annotations from
line 13 to line 14: (i) interface update (γI)—Rn.I is split into I0 and I1 with
Rn.I ≾ I0⊕ I1, reflecting the division of flow between the original node n and the
new node nn; (ii) keyset update (γk)—the logical keyset ks(Rn.I, n) is split into
ks(I0, n) and ks(I1,nn), while x is added to the actual keys present in nn and
the global keyset; and (iii) map update (γm)—the binding [x← v] is added to
the local contents of nn and the global map, extending C to C [x← v]. Together
these updates yield CSS(css, C [x← v]), establishing the atomic postcondition
of insertHelper, and leaving us with updated md_node predicates for both n
(with metadata Rnp := (I0, Cn)) and nn (with Rnn := (I1, [x← v])) at line 16.
Finally, we release both locks and relinquish ownership of the nodes, completing
the proof.

6.2 Give-up Template

We next consider the give-up template, which uses an optimistic concurrency
control approach, acquiring fewer locks at the cost of sometimes having to recover
from synchronization errors. Unlike the lock-coupling template, which maintains
locks during traversal between nodes, the give-up template only acquires a lock
just before operating on a node, and holds at most one lock at any time. This
means that a conflicting operation may invalidate a traversal, for instance by
moving the next node to another part of the data structure before we acquire its
lock. To guard against this, the traverse function (Figure 15b) must explicitly
check whether the target key is in the range of the current node using an inRange
function (line 9). If a check fails, we give up and start the traversal over from
the root node. The give-up template performs well in scenarios where operations
generally do not conflict, either because they are on independent parts of the
data structure or because they do not delete or relocate nodes.

To support the inRange function, the give-up template’s metadata for each
node includes a range:

typedef struct md_entry { lock_t lock; int min; int max; } md_entry;

As we will see, this means that the template can be applied to any data struc-
ture, but also gives the template the responsibility to maintain this metadata.
Figure 15b shows the give-up template’s implementation of traverse. Its main
loop is similar to that of the lock-coupling template, but in each iteration, it
calls inRange to check whether x is in the range of keys held in node pn->n and
its successors. If x is outside the node’s range (e.g., because the node has been
relocated), the search is restarted from the root node p.
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13 int key = getKey(n);
14 if (x < key) {
15 new_md->min = md->min;
16 new_md->max = key;
17 } else {
18 new_md->min = key;
19 new_md->max = md->max;
20 }

The insertHelper function, by contrast,
is almost identical to the lock-coupling
insertHelper, but it must also update the min
and max metadata before releasing the locks (see
the code snippet on the left).

This follows the logic of BST insertion: if the parent node n has range (a, b)
and key k, then a node inserted on the left has range (a, k), and a node inserted
on the right has range (k, b). As it happens, this logic also works for the sorted
linked list: we always insert the new node after n, and the range of the new node
is all keys greater than k (i.e., the max field of every node is always INT_MAX).
As such, we use this code in the give-up insertHelper function, and place
related conditions in the postcondition of insertOp (alluded to in Section 4.1):
if the inserted key x is less than n’s key k then the inset of the new node must
be {a ∈ ins(In, n) | a < k}, and if x > k then the new node’s inset must be
{a ∈ ins(In, n) | a > k}. This approach works well for our two example data
structures, which are both fundamentally ordered, but a data structure where
nodes are not globally ordered (but still have key ranges) would not necessarily
satisfy this condition and thus would not fit into our data structure interface.
Thus, there may be an expressiveness tradeoff between allowing more templates
and allowing more data structures; studying more template instances will help
clarify whether this is a general problem or one specific to the give-up template.

Rn := (In, Cn,minn,maxn)

md_node (n, p,Rn, css, r) := node (n, In, Cn) ∗ ◦ In
γI ∗ ◦ (ks(In, n), dom(Cn))

γk ∗ ◦ (Ex Cn)
γm∗

(p ̸= NULL⇒ (∀k.minn < k < maxn ⇒ k ∈ ins(In, n))) ∗

p.min 7→ minn ∗ p.max 7→ maxn

Fig. 19: The definition of md_node for the give-up template

As shown in Figure 19, the md_node predicate for the give-up template must
account for the additional metadata fields min and max. Each metadata record
Rn includes this extra information and is defined as Rn := (In, Cn,minn,maxn).
We ensure that these ranges are informative by requiring that all keys between
minn and maxn are in ins(In, n), i.e., the range stored in memory is an underap-
proximation of the logical inset of n. Thus, whenever a call to inRange succeeds,
we have established that the target key is in the inset of n and we are in the
correct section of the data structure. Otherwise, the representation predicate
CSS is defined identically to the lock-coupling case.

The proofs of the give-up template functions are broadly similar to the lock-
coupling proofs. In traverse, we do not hold any locks between iterations of the
loop body, and we do not maintain the invariant that x is in the inset of the
current node; this is instead checked explicitly using the inRange function. In
the case where inRange fails, we can then reestablish the loop invariant at the
root node. In insertHelper, we must show that the min and max values for
the new node underapproximate its inset, using the additional guarantees from
insertOp described above.
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7 Implementation and Evaluation

The code for our concurrent data structures is written in C, and our specifications
and proofs are written in the Verified Software Toolchain (VST) [1]. Using C
forces us to confront the implementation challenges described in Section 3, which
we might accidentally circumvent in a core calculus. VST allows us to prove
separation logic specifications of C programs in Rocq, and newer versions of
VST [5] are built on Iris [2], allowing us to directly reuse the implementation
of flow-interface ghost state from Krishna et al. [3]. In addition to the data
structures and templates described above, we prove a simple coarse-grained
locking template, where a single lock protects the entire data structure. Note
that there is no file in either C or Rocq that is specific to a combination of data
structure and template, such as BST+give-up or list+coupling: we can freely
combine any data structure and concurrency template and obtain a working
concurrent data structure with no further effort, as desired.

Table 1: Lines of code and proof per module
Category Module Code Proof Total
Data Structures BST 43 805 848

Linked List 48 772 820
Helper Proofs 0 392 392

Coarse-grained Traverse 25 437 462
Insert Helper 13 716 729
Lookup Helper 11 365 376
Helper Proofs 0 1273 1273

Lock-coupling Traverse 38 505 543
Insert Helper 25 960 985
Lookup Helper 13 432 445
Helper Proofs 0 1915 1915

Give-up Traverse 41 480 521
Insert Helper 38 1211 1249
Lookup Helper 13 432 445
InRange 6 31 37
Helper Proofs 0 1845 1845

Top-Level Insert 8 162 170
Lookup 10 148 158
Total 332 12881 13213

We have not tried to make our proofs concise, so LoC numbers may not
be especially meaningful, but we do observe that the data structure proofs are
about half the size of the template proofs. The complexity of the data structure
proofs comes mostly from reasoning about flow interfaces, while the complexity
in template proofs comes mostly from ghost state and logical atomicity reasoning.
The former could likely be simplified by proving more general lemmas about
flow interfaces (for instance, the operation of inserting a new node into a flow
interface has roughly the same structure in both the BST and the linked list).

We have only implemented three templates and two data structures so far,
but our results already illustrate some of the benefits of having clear interfaces
for data structures and templates. In prior work, Nguyen et al. [6] verified BST
instantiations of the lock-coupling and give-up templates; they also used VST,
so we can reasonably compare proof sizes. Our verification of the data structure
interface functions is much larger than theirs—800 lines compared to 250—
because we must do complicated flow-interface reasoning to meet the interface’s
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postcondition instead of returning an explicit description of the modified data
structure. In contrast, our template proofs are roughly the same size. Furthermore,
our proofs are much more reusable: Nguyen et al. state and prove different
specifications for the BST operations for each template, and their template proofs
are deeply entangled with the BST structure, while we have only one version of
the BST proofs and our templates freely apply to the linked-list data structure
as well. Of course, the benefits of modularity will increase further as more data
structure and template components are verified using our framework.

We cannot directly compare our proof effort to the work of Krishna et al. [3]
due to the difference in languages and tools, but we can make some observations
about the tradeoffs involved in modularity. For instance, each of their templates
relies on a different specification for insertOp; for lock coupling they use a
specification similar to ours, while for give-up they use one where keys are always
added to an existing node rather than creating a new one. This works because
they only instantiate the give-up template with a hash table and a B+-tree,
both of which can store multiple keys in a single node. On the data structure
side, we could imagine defining simpler specifications for common data structure
patterns like multi-key nodes, and proving that these simpler specifications imply
our generic data structure interface, making it easier to instantiate the interface
with data structures that fit that pattern. On the template side, relying on the
simpler insertOp yields simpler proofs, but those proofs simply do not apply to
data structures like the BST and linked list where insertion requires creating a
new node—the higher effort required to verify the template against the more
complicated specification leads directly to a more generally applicable template.
Thus, with suitable infrastructural support for common cases, our framework
should make proofs harder than less-modular approaches only when that difficulty
is required for compositionality.

8 Conclusion and Future Work

We have demonstrated a highly compositional formalization of the concurrency
template approach: each data structure instance is implemented and verified
without any awareness of concurrency or metadata, each template instance is im-
plemented and verified without any knowledge of the data layout, and we obtain
verified concurrent data structures immediately by instantiating our top-level
theorems with any combination of data structure and template instances. We
accomplished this by carefully separating both implementations and specifications
into data structure and template components, with flow interfaces as the abstrac-
tion between the two layers; flow-interface-based specifications for data structures
provide enough information for templates to manage synchronization metadata,
without overly restricting data structure implementations. Our next goal is to im-
plement more data structures and, especially, more templates as instances of our
interfaces, including lock-free concurrency patterns (e.g., optimistic concurrency
control with fine-grained atomics), with the ultimate aim of decomposing and
verifying real-world concurrent search structure implementations. Implementing
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more instances will also help answer the question of whether we should expect all
templates to be compatible with all data structures, or whether templates should
be allowed to place extra requirements on compatible data structures. We are also
interested in tackling the problem of maintenance operations, which prior work [6]
has identified as not clearly decomposable into concurrency and data-structure
components; it should still be possible to prove correctness of these operations
once per combination of data structure and template, and then combine them
with compositionally verified data structure and template components to yield,
e.g., a verified lock-coupling BST with rotation-based deletion.

Data Availability Statement

The artifact accompanying this paper is available online [7]. The latest version of
the development is maintained on GitHub at https://github.com/UIC-verif-group/
concurrency-templates.
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