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Introduction

❉ Programmer’s goal−fully understand what they’ve written
❉ Compiler’s responsibility−make code as optimized as possible
✘ Simple compiler optimizations can generate unexpected

behaviors in concurrent setting

✔ Memory model−core of concurrent semantics of shared memory→ alleviate tension between goals of programmer & compiler

☞ C11 memory model defines semantics in C progrogramming

Batty et al. [2011]
1
formalized concurrencymodel in C++ standard

Several issues discovered with semantics of SC C11 accesses

Model has evolved with fixes and revisions (e.g., Vafeiadis et al.

[2015], Batty et al. [2016], Lahav et al. [2017])

1
Mathematizing C++ Concurrency. In POPL 2011.
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Papers

Authors Paper Conference

Vafeiadis et al.

Common compiler optimisations
are invalid in the C11memorymodel
andwhatwe can do about it

POPL 2015

Batty et al.
Overhauling SC atomics
in C11 andOpenCL POPL 2016

Lahav et al.
Repairing sequential consistency
in C/C++11 PLDI 2017
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Sequential consistency

... the result of any execution is the same as if the operations of all

the processors were executed in some sequential order, and the

operations of each individual processor appear in this sequence in

the order specified by its program. (Lamport [1979]
2
)

x := 0; y := 0;

x := 1 y := 1
a := *y; //load 0 b := *x; //load 0

❉ Thread-local variables a = b = 0 ?
❉ 3 possible outcomes: (1) a = b = 0, (2) a = 0, b = 1, (3) a = 1, b = 0
❉ a = b = 0 cannot happen (no interleaving yields that result)
❉ Modern systems allow its behavior

2
How toMake aMultiprocessor ComputerThat Correctly Executes Multiprocess

Programs. IEEE Trans. Computers 28, 9 (1979)
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C11 memory model

na < rlx < {acq, rel} < sc

The full C/C++11 is more general

sc− Sequentially consistent accesses

rel− Release, and acq− Acquire accesses

rlx− Relaxed accesses

na− Non-atomic accesses (a.k.a. normal data accesses)



Introduction Background Common OT are invalid Overhauling SC atomics in C11 Repairing SC in C11 Selected critique

Declarative/Axiomatic memory model & Semantics

g : Wna(x, 0) h : Wna(y, 0)

k : Wsc(x, 1) l : Racq(x, 1) n : Racq(y, 1) p : Wsc(y, 1)

m : Rsc(y, 0) o : Rsc(x, 0)
sb

hb

rf
rfsw

mo

rb

x :=na 0; y :=na 0;

x :=sc 1; a :=∗acq x //1 b :=∗acq y; //1 y :=sc 1;
c :=∗sc y; //0 d :=∗acq x; //0

events − nodes & relations− edges

W(x, 0) event−x set to 0, and R(x, 0) event−x returns 0
sb− Sequenced-before : order of intra-threadmemory accesses

rf− Reads-from: connect two write and read accesses

mo− Modification order: total order on all writes to same location
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Declarative/Axiomatic memory model & Semantics

g : Wna(x, 0) h : Wna(y, 0)

k : Wsc(x, 1) l : Racq(x, 1) n : Racq(y, 1) p : Wsc(y, 1)

m : Rsc(y, 0) o : Rsc(x, 0)
sb

hb

rf
rfsw

mo

rb

x :=na 0; y :=na 0;

x :=sc 1; a :=∗acq x //1 b :=∗acq y; //1 y :=sc 1;
c :=∗sc y; //0 d :=∗acq x; //0

Additional relational types

sw− Synchronized-with: an acq (sc) read reads from a rel (sc) write
hb− Happens-before: hb = (sb ∪ sw)+ (transitive closure)

rb− Reads-before: rb = rf−1; mo \ [E]− read access reads fromwrite

that ismo− before, exclude update event from itself
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Semantics

Rules of total order of sequentially consistent operations

1. Total order on SC operations: any two SC operations must be

ordered w.r.t. each other

2. Be consistent with hb andmo restricted to SC atomics
3. SC reads (SCReads axiom) must either

◦ read frommost recent SC write before them in SC order, or

◦ read from non-SC write that does not happen-before most recent
SC write to that location
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Optimization transformations (OT)

❉ Compiler converts program to architecture, preserving its

semantics

❉ Compiler must be aware of memory consistency models of

programming language & architecture

❉ C11 compilers (GCC, LLVM) rarely perform C code compilation in

a single step

❉ Front-end translate C11 to intermediate representations (IR),

compiler executes several OT on IR then generates target code

❉ Source & target code maintains same consistency model

❉ OT: reordering independent memory & removing redundant

memory accesses

❉ x :=rel 1; y :=na 1; ⇝ y :=na 1; x :=rel 1;
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Monotonicity

“Adding synchronisation should not introduce new behaviors”

❉ Adding a memory fence

❉ Strengthening the access mode of an operation
❉ Reducing parallelism C1||C2 ⇝ C1; C2
❉ Roachmotel reorderings
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Strengthening access mode of an operation

(Recall) SCReads axiom− SC reads must either (1) read frommost

recent SC write before them in SC order, or (2) read from non-SC write

that does not happen-before most recent SC write to that location

s1 := *rlx x; //1
s2 := *rlx x; //2

x :=rlx 1; x :=rlx 3; y :=sc 3; s3 := *rlx x; //3
x :=sc 2; y :=sc 2; r := *sc x; //1 t1 := *rlx y; //1
y :=sc 1; t2 := *rlx y; //2

t3 := *rlx y; //3

? Allowed – r = s1 = t1 = 1∧ s2 = t2 = 2∧ s3 = t3 = 3
☞ If it holds, x :=sc 2− immediate SC prior write w.r.t. r :=*sc x
☞ Reading 1 of r :=*sc x from x :=rlx 1 is not valid

(x :=rlx 1 happens before x :=sc 2 via sb )
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Strengthening access mode of an operation

(Recall) SCReads axiom− SC reads must either (1) read frommost

recent SC write before them in SC order, or (2) read from non-SC write

that does not happen-before most recent SC write to that location

s1 := *rlx x; //1
s2 := *rlx x; //2

x :=rlx 1; x :=sc 3; y :=sc 3; s3 := *rlx x; //3
x :=sc 2; y :=sc 2; r := *sc x; //1 t1 := *rlx y; //1
y :=sc 1; t2 := *rlx y; //2

t3 := *rlx y; //3

? Strengthening x :=rlx 3 into x :=sc 3
☞ Establish SC order from y :=sc 1 to x :=sc 3
☞ x :=sc 3 is immediately prior in SC order of r :=*sc x
☞ Reading 1 of r :=*sc x is valid (since x :=rlx 1 does not hb x :=sc 3)
✖ New behavior introduced
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Correcting the SCReads Axiom

∀a, b. rf(b) = a∧ isSC(b) ⇒ imm(scr, a, b)∨ ¬isSC(a)
∧∄x. hb(a, x)∧ imm(scr, x, b)

(1)

➊ isSC(a) = mode(a) = sc
➋ imm(R, a, b) = R(a, b)∧ ∄c. R(a, c)∧ R(c, b)
➌ scr(a, b) = sc(a, b)∧ iswrite

loc(b)(a)
➍ iswritel(a) = ∃v.(∃X, v ′. lab(a) ∈ {WX(l, v), UX(l, v ′, v)})

? Problem: disallows a non-SC write that hb another SC-write that
is immediately prior in SC order to same location

✔ Fix: change imm(scr, x, b) into scr(x, b)
constrains all SC prior same-location writes instead of only immediate
prior write on same location

✔ No hb between write rf(b) and any same location write sc-prior to
read→ r :=*sc x reading from x :=rlx 1 not valid
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Derived sets and relations

They are formalized as C11 axioms by referencing the C11 standard

➊ irr(S; r1) where r1 = hb
➋ irr(S; r2) where r2 = ([Fsc]; sb)?; mo; (sb; [Fsc])?

➌ irr(S; r3) where r3 = rf−1; [Esc]; mo
➍ irr((S \ (mo; S)); r4)where r4 = rf−1; hbl; [EW],

and hbl− hb to events on same location
➎ irr(S; r5) where r5 = ([Fsc]; sb); rb
➏ irr(S; r6) where r6 = rb; (sb; [Fsc])

➐ irr(S; r7) where r7 = ([Fsc]; sb); rb; (sb; [Fsc])

S− Sequential consistency order

Axioms ➌ ➍ refer to as SCReads axiom
Axioms ➎ ➏ ➐ govern SC fences

❉ All axioms express as irr(S; r) except➍
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Construction partial order on SC operations

➍ irr((S \ (mo; S)); r4), where r4 = rf−1; hbl; [EW], and hbl is hb to
events on same location

✐✎ Replace S \ (mo; S)with S, obtain new➍✓ irr(S; r4)
➍✓ coincides with revised model offered by Vafeiadis et al. [2015] in

“Correcting the SCReads Axiom”

➍✓ disallows an SC read to see any write that happens before any SC

write in S

acyclic([Esc]; (r1 ∪ r2 ∪ r3 ∪ r4 ∪ r5 ∪ r6 ∪ r7); [Esc]) (Spartial)

■ Proved Spartial = ∃S. WfS ∧ ➊ ∧ ➋ ∧ ➌ ∧ ➍✓ ∧ ➎ ∧ ➏ ∧ ➐

❀ Spartial does not require S anymore
✈ This axiom is faster to simulate!

✔ Existing compilation schemes (x86 and Power) remain valid
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Stronger & simpler SC axiom

? Question: Strengthen SC semantics without requiring changes to
compilation schemes of C11 target architectures (x86 and Power)?

➎ ➏ and➐ contain rb at begin or finish at a fence
➍✓ contains rb since r4 = rf−1; hbl; [EW]

where hbl is hb to events on same location→ r4 = rf−1; mo and rb = rf−1; mo
➌ contains r3 = rf−1; [Esc]; mo
✄ Remove [Esc], we have r3 = rb and new➌✓ irr(S; rb)
❀ Enhance Spartial to have

Ssimp = acyclic([Esc]; (r1 ∪ r2 ∪ rb ∪ r4 ∪ r5 ∪ r6 ∪ r7); [Esc])

acyclic([Esc]; (([Fsc]; sb)?; (hb ∪ rb ∪ mo); (sb; [Fsc])?); [Esc]) (Ssimp)
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Compilation to Power is Broken

➊ [Esc]; hb; [Esc] ⊆ S
➋ [Esc]; mo; [Esc] ⊆ S
➌ [Esc]; rb; [Esc] ⊆ S

➍ ➎ ➏ ➐ indicate that S is required to comply with a fewmore conditions
about SC fences.

Same location: Power & ARM ensure compilation preserves condition

➋&➌ force ordering between accesses to same location
➊ forces between accesses of different locations, requiring insertion of
fence instructions
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Compilation to Power is Broken

g : Wna(x, 0) h : Wna(y, 0)

k : Wsc(x, 1) l : Racq(x, 1) n : Racq(y, 1) p : Wsc(y, 1)

m : Rsc(y, 0) o : Rsc(x, 0)
sb

sc

hb

rf
sw

mo

rb

x :=sc 1; a :=∗acq x //1 b :=∗acq y; //1 y :=sc 1;
c :=∗sc y; //0 d :=∗acq x; //0

❉ Independent Reads IndependentWrites (IRIW)

✖ Constraints by [Batty et al. 2016]− too strong to preserve

compiler correctness from C11 to Power and ARMv7
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Compilation to Power is Broken

g : Wna(x, 0) h : Wna(y, 0)

k : Wsc(x, 1) l : Racq(x, 1) n : Racq(y, 1) p : Wsc(y, 1)

m : Rsc(y, 0) o : Rsc(x, 0)
sb

sc

hb

rf
sw

mo

rb

❉ S(p, k) via sc; S(k,m) via hb (where hb = (sw ∪ sb)+);
then sc(p,m) via transitivity.

❉ S(m, p) via rb (where rb = rf−1; mo)→ S contains cycles
✖ banned by C11

✔ permitted by compilation into Power
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Fixing the model

➊ [Esc]; hb; [Esc] ⊆ S− same or different location

❉ same location: hardware maintain the order

❉ different location: a sync fence between SC accesses→ start and ends hbwith sb, i.e., sb; hb; sb
❀ Fix: replace hbwith (sb ∪ sb; hb; sb ∪ hb|=loc)

Newmodel➊✓

acyclic([Esc]; (sb ∪ sb; hb; sb ∪ hb|=loc ∪ mo ∪ rb); [Esc]) (➊✓)

➊✓ forbids elimination of SC write immediately followed by SC write

to same location, and SC read immediately followed by SC read from

same location
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Enabling Elimination of SC Accesses

k : Racq(x, 2) m : Wsc(x, 1) o : Wsc(y, 1)

l : Rsc(y, 0) n : Wsc(x, 2) p : Rsc(x, 0)
sb sb sb

rf

rb

rb

rb

a :=∗acq x; //2 x :=sc 1; y :=sc 1;
b :=∗sc y; //2 x :=sc 2; c :=∗sc x; //0

➊✓ forbids elimination of SC write immediately followed by SC write

to same location, and SC read immediately followed by SC read

from same location

❉ Eliminate x :=sc 1; (eventm : Wsc(x, 1))
❉ Create cycle n→ k→ l→ o→ p→ n
✖ Violate condition➊✓must be acyclic
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Fixing the model

acyclic([Esc]; (sb ∪ sb; hb; sb ∪ hb|=loc ∪ mo ∪ rb); [Esc]) (➊✓)

❀ Fix: weaken condition by replacing

sb; hb; sbwith sb|̸=loc; hb; sb| ̸=loc
where sb| ̸=loc − sb edges to different location

New condition (named SC-before) requires acyclicity of [Esc]; scb; [Esc]

scb = sb ∪ sb|̸=loc; hb; sb|̸=loc ∪ hb|=loc ∪ mo ∪ rb
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SC Fences are TooWeak

? Question: Shall adding SC fences between every pair of sharedmemory
restore interleaving behavior?

✖ Original C11 & Batty et al. [2016] do not hold
✔ hold for Power & ARM

❉ Adapted from Batty el al. [2016]

acyclic(([Esc] ∪ [Fsc]; sb?); (hb ∪ mo ∪ rb); ([Esc] ∪ sb?; [Fsc]))

❉ Replace hb ∪ mo ∪ rbwith scb
where scb = sb ∪ sb| ̸=loc; hb; sb|̸=loc ∪ hb|=loc ∪ mo ∪ rb

❀ Require acyclicity of psc
1

psc
1
= ([Esc] ∪ [Fsc]; sb?); scb; ([Esc] ∪ sb?; [Fsc])
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SC Fences are TooWeak

k : Wrlx(x, 1) l : Rrlx(x, 1) n : Wrlx(y, 1)

f1 : Fsc f2 : Fsc

m : Rrlx(y, 0) o : Rrlx(x, 0)

sb sb

sb sb

rf
rb

rb

a :=∗rlx x; //1 y :=rlx 1;
x :=rlx 1; fencesc fencesc

b :=∗rlx y; //0 c :=∗rlx x; //0

☞ Path f1 to f2 via sb → rb → sb
☞ Path f2 to f1 via sb → rb → rf → sb

Applying psc
1
= ([Esc] ∪ [Fsc]; sb?); scb; ([Esc] ∪ sb?; [Fsc]) is acyclic

✖ Path f2 to f1 contributes neither Batty et al. [2016] nor psc
1
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Fixing model

❀ Extended-coherence-order relation eco = (rf ∪ mo ∪ rb)+

❀ Disallow the weak behavior, it is impossible for either psc
1
or

[Fsc]; sb; eco; sb; [Fsc] containing cycles

acyclic(psc
1
∪ [Fsc]; sb; eco; sb; [Fsc])
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Selected critique

✥ (Vafeiadis et al. 2015)− disallows reordering of non-atomic load

and store operations, when offered solution to out-of-thin-air

reads that restricts (hb ∪ rf) cycle (source or destination of rf edge
is non-atomic)

✥ (Batty et al. 2016)− strong to preserve compiler correctness from

C11 to Power and ARMv7

✥ (Lahav et al. 2017)− RC11 directly map high-level primitive to

sequence of machine instructions without code optimizations,

then challenging to apply methods to verify optimization passes



Thank you for listening!
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Strengthening access mode of an operation

Wrlx(x, 1) Wrlx(x, 3) Wsc(y, 3)

Wsc(x, 2) Wsc(y, 2) Rsc(x, 1)

Wsc(y, 1)

sb

sb

sb sb

sc
sc

sc

scmo mo

mo

morf

s1 := *rlx x; //1
s2 := *rlx x; //2

x :=rlx 1; x :=rlx 3; y :=sc 3; s3 := *rlx x; //3
x :=sc 2; y :=sc 2; r := *sc x; //1 t1 := *rlx y; //1
y :=sc 1; t2 := *rlx y; //2

t3 := *rlx y; //3
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